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Lattices for the lattice Boltzmann method
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A recently introduced theory of higher-order lattice Boltzmann models [Chikatamarla and Karlin, Phys. Rev.
Lett. 97, 190601 (2006)] is elaborated in detail. A general theory of the construction of lattice Boltzmann
models as an approximation to the Boltzmann equation is presented. New lattices are found in all three
dimensions and are classified according to their accuracy (degree of approximation of the Boltzmann equation).
The numerical stability of these lattices is argued based on the entropy principle. The efficiency and accuracy
of many new lattices are demonstrated via simulations in all three dimensions.
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I. INTRODUCTION

The lattice Boltzmann (LB) method is a powerful new
approach to hydrodynamics, with applications ranging from
large Reynolds number flows to flows at the micrometer
scale, porous media, and multiphase flows [1]. The LB
method solves a fully discrete kinetic equation for popula-
tions fi(x,7), designed to reproduce the Navier-Stokes equa-
tions in the hydrodynamic limit. Populations correspond to
discrete velocities c;, i=1,...,n,; which fit into a regular
spatial lattice with nodes x. This enables a simple and highly
efficient “stream along links and equilibrate at nodes” real-
ization of the LB algorithm.

In order to establish a LB model, it is crucial to choose
the right set of discrete velocities c;, their corresponding
weights W;, and a reference temperature 7. In one dimen-
sion, the simplest choice of discrete velocities c; is {0, = 1}
[the one-dimensional three-velocity (D1Q3) lattice]. For this
simple lattice, the derivation of weights and the reference
temperature are well known [2—4]. In higher dimensions, the
D1Q3 lattice manifests itself—via a tensor product of D cop-
ies of D1Q3—as the well-known D2Q9 lattice in 2D and the
D3Q27 lattice in 3D (and its prunes, the D3Q15 and D3Q19
lattices). A majority of the LB models and simulations to
date have used these standard lattices. Here, we follow the
established nomenclature, and label the models as DnQk,
where n is the dimension of space, and k is the number of
discrete velocities.

However, the three-velocity lattice and its counterparts in
higher dimensions suffer from incomplete Galilean invari-
ance [5-7]. That is, the Navier-Stokes equations for density
and momentum are not fully recovered by the LB equation
on these lattices. Also, for further applications such as com-
pressible flows [8], multiphase flows [9], multicomponent
flows [10], or microflows [11], more accurate and isotropic
lattices become important. Hence, a concrete effort is re-
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quired in establishing higher-order lattices for lattice Boltz-
mann methods.

To improve the accuracy and isotropy of a lattice, a larger
number of discrete velocities is required. One way of obtain-
ing higher-order LB models is by discretizing the Boltzmann
equation on the roots of Hermite polynomials [6,12]. This
route of higher-order Gauss-Hermite quadratures promised a
systematic derivation of new complete Galilean-invariant LB
models [6,12]. However, since the roots of Hermite polyno-
mials are irrational, the corresponding discrete velocities
cannot be fitted into a regular space-filling lattice. Thus, one
of the most important advantages of the LB methods, the
exact space discretization of the advection step, is lost with
the Gauss-Hermite quadrature-based off-lattice models. Al-
though in our construction the off-lattice Gauss-Hermite-
based mdoels are derived as limiting case solutions, we shall
focus here on the genuine lattice-based or integer-valued
discrete-velocity models.

For the three-velocity set, the derivation of a lattice
Boltzmann scheme has been achieved in several different
ways [2-4]. However, none of these approaches enabled a
systematic construction of larger (integer-valued) velocity
sets which would better approximate Boltzmann’s kinetic
theory. More importantly, none of these theories could claim
that the construction would lead to a stable numerical
scheme; most of the earlier attempts remained a process of
trial and error [13—15]. In particular, the approach of [14,15]
is based on a quadrature representation of the equilibrium
moments (not necessarily Gauss-Hermite) where the nodes
of the quadrature are chosen empirically in such a way as to
reflect higher-order isotropy.

In a recent Letter [7], we have introduced a systematic
approach to constructing higher-order lattices suitable for
stable LB models. We continue here with the entropic ap-
proach which promises to be a viable candidate for the con-
struction of higher-order lattices for lattice Boltzmann meth-
ods [7]. The construction first proceeds in one dimension and
is then extended to two and three dimensions. The theory
presented is general in nature; the standard lattices used in
LB simulations follow as low-order approximations in this
construction.
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FIG. 1. One-dimensional four-velocity set.

The outline of the paper is as follows. In Sec. II, for the
sake of completeness, we review the entropic construction of
Ref. [7] in one spatial dimension. Entropy functions and the
reference temperatures are found for all four- and five-
velocity sets (Sec. II A), together with the expressions for the
equilibrium populations. The higher-order lattices with seven
and nine velocities are presented in Appendixes C and D,
respectively. We further discuss the order of isotropy of the
lattice approximation (Sec. II B). We demonstrate with a nu-
merical example that the lattices which do not support the
entropy function are unstable, unlike the admissible lattices
(Sec. I1 C). Also, in Appendix B we demonstrate that higher-
order lattices host several nontrivial LB models with
Gaussian-like and non-Gaussian equilibria.

In Sec. III, we generalize the one-dimensional lattices of
Sec. II to two and three spatial dimensions. The general
method of generating the higher-dimensional lattices from
any of the one-dimensional velocity sets of Sec. II, is de-
scribed in Sec. III A, whereas the one-dimensional five-
velocity set {0, = 1, =3} is used in the following. The two-
dimensional D2Q25 lattice with 25 velocities per grid point
is fully described and validated numerically in Sec. III C,
and its three-dimensional counterpart, the D3Q125 lattice, in
Sec. I D. It is argued that the accuracy of the higher-order
lattices in two and three dimensions is the same as their
generating one-dimensional lattice.

A systematic procedure of pruning (reducing the number
of discrete velocities) is presented in Sec. IV. The pruning
procedure enables to significantly reduce the number of dis-
crete velocities in three dimensions. The particularly impor-
tant D3Q41 lattice as a prune of the D3Q125 lattice is de-
scribed in detail. In Sec. V, the D3Q41 LB model is validated
with the three-dimensional Taylor-Green vortex flow simula-
tion, and results are found in good agreement with the avail-
able direct numerical simulation of the incompressible
Navier-Stokes equation using a spectral element code. Fi-
nally, the discussions are presented in Sec. VI.

II. LATTICE BOLTZMANN HIERARCHY IN ONE
DIMENSION

A. Entropic construction

Moving on from the D1Q3 lattice with velocities {0, * 1},
we shall now search systematically for all possible discrete
velocity sets, in one dimension, whose equilibria better ap-
proximate the higher-order moments of the local Maxwell-
ian. Let us list the first few moments of the Maxwellian at a
fixed reference temperature 7T, realized as sums over a finite
number of velocities ng,

ng

ng
p=2 9 pu=2 £,
i=1 i=1
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nq

P= ) % = pTy + pu,
i=1

ng

Q=2 f{%c] = 3pTou+pic’,

i=1

q

R= ) ¢t = 3pT3 + 6pTou® + pu’. (1)
i=1

Here the density p and the momentum density pu are the
locally conserved quantities, and 7|, is the reference tempera-
ture, related to the speed of sound as T0=cf. The second-,
third-, and fourth-order moments P, Q, and R are interpreted
as the pressure tensor, the energy flux, and the rate of change
of the energy flux, respectively. Their values at the discrete
velocity equilibrium presented in Eq. (1) correspond to the
well-known Maxwell-Boltzmann (MB) relations.

Our task now is to search for discrete velocity sets whose
equilibrium approximates, as closely as possible, the MB
relations (1). Note that the moments of the equilibrium of the
three-velocity set {0, = 1} (and its extensions in higher di-
mensions) deviate from the MB relations (1). In particular,
the underlined terms in Eq. (1) are not correctly recovered
(see Appendix A for further details on the accuracy of the
D2Q9 lattice).

Before we proceed with the derivation of higher-order
lattices, let us recall the entropic construction [2,12,16] of
the LB models. In the entropic construction, the equilibrium
populations f;9 minimize the entropy function H,

RSN
H_zfiln( Wi>’ ()

with appropriately chosen weights W;>0, under the con-
straints of mass and momentum conservation, 274,{1,c;}f:4
={p, pu}. Once the equilibrium distribution is known, a lat-
tice Bhatnagar-Gross-Krook (LBGK) scheme can be set up,

[t et D= filen = 5[ = el @)

7+ 1

where 7 is related to the kinematic viscosity v as v=rc?. This
simple construction ensures thermodynamic consistency and
stability. Further enhancement of stability can be achieved by
employing the entropic time-stepping instead of the standard
LB time steps [2,17]. In this paper we do not dwell on the
latter stabilization procedure and use the LBGK model (3).

The first generic extension of the D1Q3 lattice, {0, * 1},
is the four-velocity set {*m, = n} (n,=4; see Fig. 1). At this
stage of the analysis, we do not enforce the values of m and
n to be integer. Our goal is to derive the weights W.,,, W. .
and the reference temperature Tyy(m,n), at which the result-
ing equilibrium implies the constitutive relations for the
pressure tensor P4 and the energy flux Q% (1).
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FIG. 2. Error in the equilibrium energy flux 1-0Q5%(r,) for all
admissible four-velocity sets.

Using a series expansion in powers of velocity u, in order
to obtain f;% from the minimization problem (entropic con-
struction), we find that the zeroth-, the first-, and the second-
order terms (1) are recovered with the following weights and
reference temperature [7]:

—_————
m? =50 + ym* = 10n*m?* + n*
W+m=

- 12(m? = n?)

)

—_—
5m? = n? = \m* - 10n*m? + n*
W‘*’n =

e 12(m? = n?)

)

_—
m? +n® + \m* = 10n°m* + n*

Ty= p (4)

At this point we are left with just one degree of freedom—
the ratio between the velocities, ry(m,n)=m/n. The ratio r,
needs to be chosen without violating the positivity of either
the weights or the reference temperature. From (4), it follows
that any ry < r: (r:= V3—12) satisfies the positivity require-
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FIG. 3. One-dimensional five-velocity set.

ment. The limiting ratio rZ is related to the roots of the Her-
mite polynomials and the popular Gauss-Hermite quadrature
used in the LB literature [7].

Fixing this ratio at r4=r:, one obtains an off-lattice veloc-
ity set identical to the one obtained using the Gauss-Hermite
quadrature. At this value rI, the cubic term in the equilibrium
energy flux, Q%=3pTu+Q5(ry)pu’, becomes the same as
in the Maxwell-Boltzmann relation, viz., ng(r:)=1 (com-
plete Galilean invariance). However, we are now free to
choose the ratio r,< r: such that m and n are integers. This
enables us to set up a LB scheme with integer-valued veloci-
ties. Moreover, this particular analysis gives us an insight
into the accuracy of all possible four-velocity sets. It can be
seen in Fig. 2 that deviation of the energy flux from the
Maxwell-Boltzmann relation monotonically vanishes as ry
approaches rZ. Thus, we have classified all the four-velocity
sets according to their accuracy.

It was earlier conjectured that the rest population, corre-
sponding to ¢;=0, plays an important role in obtaining a
stable LB scheme [13]. Contrary to this, all the four-velocity
sets derived herein do not contain a rest population and yet
are numerically stable. Test simulations were carried out for
the one-dimensional shock tube problem (Sec. II C), and all
the four-velocity lattices described herein were found to be
numerically stable. However, the advantages over the three-
velocity set are not very significant due to the fact that none
of the (integer-valued) four-velocity sets are completely Gal-
ilean invariant (Q53'=1 only at the limit r4=r:). Thus, we
continue our construction further toward more accurate lat-
tices and with more discrete velocities.

For a generic five-velocity set {0, =m, *n}, we have one
more degree of freedom when finding the corresponding
weights (see Fig. 3). We are now free to choose independent
weights for the three discrete velocities, and the value of the
reference temperature. Proceeding with the derivation of the
equilibrium as in the four-velocity case, we obtain the
weights and the reference temperature as

=3m* = 3n* + 54m*n® + (m* + nH)\NIm* - 42n°m* + 9n*

0:

75m*n*

s

Im* — 6n* = 27n°m? — (3m® = 2n>)\9Im* — 42n°m> + 9n*

m

300m>(m?* — n?)

)

*n

B 9n* — 6m* = 27n°m?* — (3n® = 2m?) VOm* — 42n%m? + 9n*
a 300n%(n* — m?)

b}

B 3m?+3n% - \/9m4 —42n°m® + 9n*

0=

(5)

30
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TABLE 1. Lattice Boltzmann (LB) models as rational-number approximations to roots of Hermite poly-
nomials. Rows are grouped according to the number of discrete velocities, n, from 3 to 5 (levels). The case
n=3 corresponds to the standard LB model. Three first integer-valued LB velocity sets, corresponding to the
smallest values m=1,2,3, are given for the fourth and the fifth levels. Roots of Hermite polynomials H,, are
given in the last row of each n level. Coefficients of the constitutive relations (7) corresponding to the four-
and five-velocity LB models are presented. The Maxwell-Boltzmann coefficients are given in the last row for
comparison. The last column gives the ratios between the magnitudes of the discrete velocities.

n Model ¢ P, 03 R, Ry r=m/n
3 LB 0,*1 -4 0 3 -3

3 M, 0,13 -4 0 3 -4

4 LB +1,*4 -0.041 0.266 3.799 -0.697 0.25000
4 LB +2,%7 -0.012 0.425 4275 -0.614 0.28571
4 LB +3, %10 -0.005 0.536 4.610 -0.534 0.30000
4 H, +\3+6 0 1 6 0 0.31738
5 LB 0,+1,*3 0 1 6 0.031 0.33333
5 LB 0,+2,%*5 0 1 6 0.218 0.40000
5 LB 0,+3,%7 0 1 6 0.345 0.42857
5 Hs 0, =V5=410 0 1 6 1 0.47449
o0 MB continuous 0 1 6 1

The equilibrium energy flux Q° can now be set in full agree-
ment with the Maxwell-Boltzmann value (1) for all the five-
velocity sets, while the fourth-order moment R®? is recovered
up to the quadratic term (6pTou?),

R =3pT + 6pTou* + Ry(rs)pu*. (6)

The fourth-order term R4(rs)pu* depends on the ratio of the
velocities rs=m/n. Again, the Maxwell-Boltzmann value
R,=1 is obtained when rs reaches the limit value rg *=(\5
- \2)/ \3 The ratio r5 is equal to the ratio of the nontr1v1al
roots of the fifth-order Hermite polynomial. A monotonic
convergence is observed also in the case of five-velocity sets.
This completes the classification of all the five-velocity sets.
As mentioned above, all the five-velocity sets have a useful
feature, viz., the Maxwell-Boltzmann form of the equilib-
rium energy flux Q% is fully recovered, which makes the
corresponding LB models completely Galilean invariant
(they recover isothermal Navier-Stokes equations).

In order to realize a lattice Boltzmann scheme we need
integer-valued velocities m and n, because, for non-integer-
valued (or non-space-filling) lattices, the advection step of
the LBGK equation (3) cannot be discretized exactly. For
non-integer-valued discrete velocities, like the ones obtained
from the Gauss-Hermite quadrature, we need to use interpo-
lation schemes in order to complete the advection step. This
takes away one of the primary advantages of LB methods.
Interpolation on slowly varying fields like density, velocity,
temperature, etc. is different from interpolating the popula-
tions themselves. The populations in a LB scheme are func-
tions of the basic fields and their higher-order derivatives, for
example, the Chapman-Enskog approximation to the popula-
tions [18]. Hence, simple low-order interpolation schemes
may not be sufficient in order to accurately advect the popu-
lations, thereby leading to numerical dissipation.

Due to the generic nature of the construction we have
followed so far, lattices with arbitrary m and n have been
identified. We can now choose m and n to be integers and
establish a lattice scheme. We see that, strikingly and non-
trivially, some seemingly obvious lattices are immediately
ruled out. In particular, the first admissible four-velocity set
is {1, £ 4}, that is, for example, the set {1, =2} is pro-
hibited. Indeed, for the {*1, +2} lattice, the ratio of the
velocities is 0.5>r", and the reference temperature T(1,2)
(4) does not exist (is complex valued). For the same reason,
a popular five-velocity lattice {0, = 1, =2} is also ruled out
(0.5 >r:). This explains why earlier attempts to construct a
LB model on this lattice failed to produce a numerically
stable scheme (see Sec. II C).

In Table I some of the admissible lattices that we have
constructed so far are presented. For these lattices, closeness
of the moments to the Maxwell-Boltzmann moments is indi-
cated through the coefficients of the terms appearing in the
MB relations (1). For example, P, refers to the coefficient of
the term u" in the second-order equilibrium moment P®Y;
similarly Q, and R,

P =pTy+ pu? + Pypu*,
Q% =3pTyu + Q3pur’,

R =3pT% + RypTou® + Rypu*. (7)

Two important conclusions can be drawn from Table I.
First, the quality of the reconstruction of the moments mono-
tonically depends on the closeness of the ratio r(m,n) to the
corresponding limit (Hermite) value. As ry(m, n)—r:, the
corresponding coefficients Qs, R,, and P, tend monotoni-
cally to the values corresponding to the model based on the
fourth-order Hermite polynomial H,. In the same way, the
coefficient R, tends to 1 as rs(m, n)—>r thus accomplishing
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FIG. 4. Convergence of moments for the four- and five-velocity
sets. Functions Qs3(r) (dashed lines) and R4(r) (solid lines) are
shown for all admissible four- and five-velocity sets. Completely
Galilean-invariant isothermal models correspond to Q3=1.

the full reconstruction of all the relevant moments in the
Maxwell-Boltzmann form. Second, switching to the next
higher number of discrete velocities (from n, to n,+1), one
does not spoil the quality already reached at the n, level.
Indeed, the Maxwell-Boltzmann values Q;=1, R,=6, and
P,=0, which are recovered by the four-velocity LB approxi-
mations in the limit r4ﬂr:, all remain intact for the five
velocity sets; only the remaining coefficient R4 is monotoni-
cally improved (see also Fig. 4). In other words, all the five-
velocity LB models given in Table I are completely Galilean
invariant. While this is expected for the models based on the
Gauss-Hermite quadrature, the fact that the same is true also
for the rational-number lattice Boltzmann approximations is
nontrivial.

Thus, with the integer-valued velocities of Table I, and the
corresponding expressions for the weights, we set up the
lattice equilibria /79 as minima of the entropy (2) (f{% are
easily derived by solving the minimization problem by per-
turbation in powers of u), and hence the lattice BGK models.
All these lattices are based on the entropy function (2), and
are thermodynamically consistent and numerically stable.
The {0, =1, * 3} five-velocity set, in particular, has a num-
ber of advantages over the three-velocity set {0, = 1} due to
the correctness of the equilibrium energy flux Q°. This zero-
one-three (ZOT) lattice will serve as a basis for higher-
dimensional generalizations below (see Sec. III). The accu-
racy of the equilibrium moments of the ZOT lattice is as
follows:

P=pT, + pu® + O(u®),
Q% =3pTou + pu’ + O(u°),

R%= 3pT3 +6pTou® + O(u*). (8)

The family of lattices based on the ZOT lattice can possibly
replace the family of standard lattices based on the D1Q3
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three-velocity lattices used so far in a majority of LB simu-
lations.

Let us continue the entropic construction further toward
more accurate lattices. We skip the six-velocity set and
move on to the seven-velocity sets. Without any loss of gen-
erality, a seven-velocity set can be represented as
{0, =1, = n, = m}. The entropic construction proceeds in the
same fashion as for the four- and the five-velocity sets. The
general expressions for all seven-velocity sets are given in
Appendix C. Let us denote by ¢y =max;_; _, |ci the maxi-
mal absolute value of the velocity in a given discrete-
velocity set. We call the velocity set the shortest lattice in a
family of admissible lattices with a given number of the
velocities n, if the minimal value of c,,,, is attained by this
lattice. For example, the ZOT lattice is the shortest in the
family of admissible five-velocity sets (see Table I). The
shortest lattice in the seven-velocity family is the set
{0, =1, =2, =3}, the weights and reference temperature for
which are

1
Wo= g{To[3(14 —5T,)Ty —49] + 36},
1
Wi = ETO[TO(STO— 13) +12],
1
W"_'Z = %TO[SQ - TO)TO - 3],

1
Was=—To[15(Ty— 1)Ty+ 4],
o3 = o TIS(T) = DTy +4]

3
1 —
\/=(=5+3130
. _g+l3 7 7( +3430)
°7373V5330-5) 3523
~0.697 953 322019 683 1. )

The accuracy of the moment reconstruction on the {0, * 1,
+2, * 3} lattice is

P=pTy+ pu® + O(u®),
Q% =3pTou+pu’ +0(u’),

R =3pT + 6pTou* + pu* + O(u®). (10)

Comparing this with the result for the ZOT lattice (8), we see
that the fourth-order moment R® is matched, and the accu-
racy for the moments P°4 and O is two orders of magnitude
higher with the shortest D1Q7 lattice (the same holds also
for all other admissible lattices of the seven-velocity family;
see Appendix C). The D1Q9 lattices are also presented in
Appendix D.

B. Order of isotropy ¢

It can be seen from the above construction that extending
the velocity set leads not only to matching moments of in-
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creasingly higher order but also to the improvement of the
order of errors in the lower-order moments. For example, in
the case of the seven-velocity lattices, the second-order mo-
ment P is recovered with O(u®) errors, the third-order mo-
ment with O(u’) errors, and the fourth-order moment with
O(u®) errors. In other words, the order of the moment plus
the order of accuracy with which it recovers the correspond-
ing Maxwell-Boltzmann relation remains the same for vari-
ous moments.

In order to quantify this observation, let us denote M;q,
where p=2, the generic higher-order equilibrium moment
MPA=37d,fi9c] (that is, PY=M3%, Q*9=M5", and so on). Any
moment M;q can be represented as an expansion into powers
of the velocity u,

0

Mf,qz%apquq. (11)
p

The moments of the same order of the local Maxwellian,
M};’IB, are polynomials of the order p,

P
MB _ MB ¢
M® =2 ayPul. (12)
q=0
For a given discrete-velocity equilibrium, we say that the
Maxwell-Boltzmann form of the moment M;q is recovered
with accuracy of order k if the first nonvanishing coefficient
of the expansion
eq _ asMB _ _ MBy ¢
M -M, => (apg—a,, Jul, (13)
q=0
corresponds to the term of the order u*. With these defini-
tions, for each higher-order moment we introduce a function
of two integer variables, ¢(p,k), given by the sum of the
order of the moment p=2 and order of accuracy for that
moment, k=0,

(Ppk=p+k. (14)

The entropic construction of the lattices above demonstrates
monotonicity in the following sense. The value of the func-
tion ¢, is constant for all the corresponding (independent)
equilibrium moments M;? with p varying from p=2 to ny,
where n, is the number of discrete velocities (for a set with
n, discrete velocities only n,; moments have independent dy-
namics, while the higher moments are permanently slaved).
This single value ¢ is the unique characteristic accuracy of
all the moments of a given lattice, and therefore characterizes
the lattice itself (below, we refer to this value as the order of
isotropy ¢).

For the standard D1Q3 lattice, we have ¢=6; i.e., the
equilibrium pressure tensor (p=2) has errors of order O(u*)
(k=4), the equilibrium energy flux (p=3) has errors of order
O(u®), the fourth-order moment has errors of order O(u?),
etc. Similarly, all the admissible integer-valued four-velocity
lattices have ¢=7, the five-velocity lattices D1Q5 have ¢
=8, the seven-velocity lattices have ¢=10. We say that the
Maxwell-Boltzmann equilibrium relation for the equilibrium
moment M} is fully recovered if the first nonvanishing term
in Eq. (13) is of order O(u”*') or higher (k> p). In view of
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FIG. 5. Convergence of equilibrium moments for various dis-
crete velocity sets. The rows indicate the Maxwell-Boltzmann mo-
ments M 2/“3 of order p, while the columns refer to their expansion
into powers of velocity u4. The nonzero terms of the expansion are
indicated with filled boxes. The terms on or above the line are
correctly recovered by a particular integer-valued D1Qn, family.

the monotonicity in the entropic construction, the full recov-
ery of a moment also implies the full recovery of all the
lower-order moments. Figure 5 shows how various discrete
velocity sets recover the Maxwell-Boltzmann relations. The
highest moment that is fully recovered, p,,., varies from
Pmax=2 for the D1Q3 lattice to p,,, =4 for the D1Q7 lattice.
Note that the latter is the lowest-order lattice which fully
recovers the Maxwell-Boltzmann relations to the order re-
quired for constructing LB models for fully compressible
flows.

We have further checked the above-mentioned monoto-
nicity by considering the nine-velocity lattice (see Appendix
D). As expected, the order of isotropy becomes ¢=12, i.e.,
two orders higher compared to the D1Q7 lattice. In Table II,
we bring together the orders of isotropy for the shortest
D1Q(1+2k) lattices (odd number of velocities) for k
=1,...,4.

Considering lattices up to the nine-velocity lattice, it can
be conjectured that the monotonicity of the order of isotropy
¢ holds for all higher-order lattices. The order of isotropy ¢,
introduced above to characterize the one-dimensional lat-
tices, applies also to their two- and three-dimensional exten-
sions considered in Sec. III. Independent of entropy esti-
mates, similar estimates of isotropy have been recently
reported in [19].

TABLE II. The shortest lattices with odd number of velocities,
ng=1+2q, g=1,2,3,4.

ng Ci [
3 {0, =1}

5 {0, +1,+3} 8
7 {0,+1,*2,%3} 10
9 {0,x1,+2,*£3,+5} 12
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C. Instability of lattices

To this end, we have established how to construct lattices,
in one dimension, to any desired order of accuracy. We have
also pointed out that the entropic construction does not admit
all integer-valued lattices. In other words, there is a non-
trivial selection of lattices that are chosen by the requirement
of existence of an entropy function. For example, the shortest
five-velocity set that appears in our construction is the ZOT
lattice {0, =1, =3}, and not the set {0, =1, =2}, which
could have been obtained by relaxing the entropy require-
ment and simply enforcing the matching of higher-order
equilibrium moments to the MB expressions. We recall that
the {0, = 1, * 2} lattice is ruled out by the entropic construc-
tion since the reference temperature (5) becomes complex
valued.

We remark that, although a number of ways exist for set-
ting up a lattice Boltzmann scheme on a given lattice, none
of the theories so far has attempted to explain the relation
between numerical stability and the lattice. A popular way of
establishing a LB scheme is by discretizing (followed by
truncating) the local Maxwellian on a given lattice to obtain
the equilibrium distributions and thus establishing the LBGK
scheme. In this process, no assessment of stability or insta-
bility of the resulting LB models is possible. A trial and error
procedure was the only way of searching for more accurate
and stable lattices. Thus the entropic construction explains
the stability and also the instability of certain lattices.
Loosely defining the notion of stability of a lattice, it can be
said that a LBGK simulation, together with its lattice, is
stable if its grid requirements are comparable to that of a
direct numerical simulation (DNS). Or, alternatively, one
could start with the assumption that the D2Q9 lattice is
stable, and any lattice that requires much more spatial reso-
lution than the D2Q9 lattice is unstable.

Now, let us consider the two lattices {0, =1, =3} and
{0, =1, =2}, one supported by the entropy function, the
other not. The {0, *+ 1, =2} lattice was considered a number
of times in the past (see, for example, [5,13,20]); hence we
take the equilibrium distribution for it from the literature [5]
and perform a simulation to compare it with the entropic
{0, =1, =3} lattice. Once the equilibrium distributions are
known, a standard LBGK discretization scheme (3), with
relaxation time w=2/(27+1), was applied to both the lat-
tices.

A standard test case in one dimension is the shock tube
problem [17]. The initial condition for the simulation is a
density step p=3.0 for x<<L/2 (L is the length of domain),
p=1.0 for x>L/2 (as in [5]). Both the models were tested at
various values of the kinematic viscosity. The {0, =1, * 3}
lattice is stable at any value of the viscosity. This is in drastic
contrast to the {0, = 1, * 2} lattice, which is numerically un-
stable even for moderate v. A typical situation is shown in
Fig. 6, corresponding to v=0.138. The snapshot of the den-
sity profile is taken a few time steps before the run for the
{0, =1, =2} lattice terminates; the instability pattern is
clearly visible; the density at some lattice nodes becomes
negative. The oscillatory pattern of the {0, = 1, * 3} lattice
at the shock is due to lack of artificial diffusivity and is
pertinent to all lattice Boltzmann schemes. Thus, the LB
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FIG. 6. Simulation of one-dimensional shock tube problem on
{0, £1, £3} (present) and {0, =1, =2} lattices.

models based on the entropic considerations are stable, and
clearly outperform the nonentropic models.

It must be remembered that both the lattices, the
{0, =1, *2} (equilibrium from the literature) and the
{0, =1, =3} lattice, fully recover the third-order moment
0%, and the order of isotropy is the same for both lattices.
The choice of weights and reference temperature is different
for both lattices, thus enabling the accuracy of the third-order
moment to remain the same. However, we see that when a
lattice is not supported by entropy it is unstable in simula-
tions.

It is long known that the {0, * 1, = 2} lattice is numeri-
cally unstable. Hence, LB users did not switch to the more
accurate and completely Galilean-invariant {0, * 1, =2} lat-
tice. The simple {0, * 1} lattice and its higher-dimensional
extensions were used instead, in spite of their u? deviations
and hence their inability to recover the Navier-Stokes equa-
tions completely. In some of the earlier studies, the pattern of
instability of the {0, =1, =2} lattice, was attributed to the
lattice Boltzmann scheme itself [21], or to the advection part
of the LB scheme [15,20], or to the collision of the LB
scheme [22], or to insufficient isotropy [19]. In contrast, the
present entropic construction attributes this instability to the
inappropriate choice of the lattice, and not to the LBGK
scheme per se. However, it remains to be rigorously proven
that all lattices that support an entropy function are stable
and the rest are bound to be unstable.

In our study we find that all the lattices that support the
entropy function (2) are stable. Another interesting example
of how entropy-supported lattices produce stable simulations
is given in Appendix B, where it is shown that simulations
with a non-Gaussian-shaped equilibrium are also stable.

III. HIGHER DIMENSIONS
A. Generating higher-dimensional lattices from
a one-dimensional lattice

The general procedure for constructing lattices in one di-
mension was presented in the previous section. Let us now
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extend these lattices into two and three dimensions. Descrip-
tion of a lattice requires the description of the discrete ve-
locities followed by the weights, the reference temperature,
and finally the equilibrium distribution.

The discrete velocities in D dimensions are obtained by
taking a tensor product of D copies of a one-dimensional
lattice. Let us consider a general 1D, n-bit lattice c¢;
={0, *a,, T a,,..., X a(,_y)n}, assuming n is odd. The pro-
cedure remains the same for even number of discrete veloci-
ties. A Cartesian representation of the discrete velocities in
this one-dimensional lattice is made easy by choosing a ref-
erence frame with the zero-velocity population at the origin.
All the populations can now be denoted by their coordinates
(i), where i €{0, *ay, *ay, ..., T ag_n)-

A D-dimensional extension of this n-velocity lattice con-
tains n” discrete velocities. Hence, in two dimensions, we
need to specify the coordinates of all the n” discrete veloci-
ties. With the zero-velocity (rest population) chosen as the
origin, all the populations can be described by their coordi-
nates (i,j) where i,je€{0,*ay, *ap,..., Zag_1)). Simi-
larly, a 3D extension is possible by representing the pop-
ulations with their coordinates (i,j,k) with i,j,k
e{0,*ay, Tay, ..., T ap_1nt-

After the description of the discrete velocities, we proceed
with the description of the weights and of the reference tem-
perature for these higher-dimensional lattices. The reference
temperature 7, remains the same as in the one-dimensional
case, i.e., the reference temperature appearing in the equilib-
rium moments is the same for all the directions (x, y, and z).
Obviously, the definition of temperature (or speed of sound)
cannot be a function of the direction.

The weights in higher dimensions are obtained as alge-
braic products of the weights derived in the 1D case. Let us
describe the weights for the populations according to an
energy-shell representation. All the populations (i,j,k) (D
=3) or (i,j) (D=2) can be collected into shells with the same
value of energy e defined as e=i’+j>+k> (D=3) or e=i’
+j* (D=2). The weights W ;) or W, for all the velocities
(i,j,k) or (i,j) in a particular energy shell are equally dis-
tributed. For a given set of discrete velocities ¢
={0, *a,, T a,,..., X a(_1)n}, in one dimension, this means
that both the populations (i) and (—i) have the same weight
Wiy=Wcy, Yiec. In two dimensions, W =W; +j, V
i,jec, and similarly in three dimensions, Wy
=Wi+j+n, V i,j,kec. Hence, it is sufficient to specify
the weight of one discrete velocity per energy shell. Assum-
ing that the weights W, of a given one-dimensional lattice ¢
are known, the weights for its two- and three-dimensional
extensions, W(; ;) and W(; ; ), are given by

Wi =W X W),

Wi =W X Wi X W, (15)

for D=2 and D=3, respectively. The primary advantage of
extending the 1D lattices with the procedure just described is
that it retains the order of isotropy ¢, and hence the accuracy
of the corresponding lattices in higher dimensions. Exten-
sions into higher dimensions would all have the same order
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of accuracy (again, as compared to Maxwell-Boltzmann mo-
ment relations) for all the moments of the equilibrium distri-
bution. Hence, the 1D LB hierarchy established in Sec. II is
readily extended to two and three dimensions using this pro-
cedure. This is in contrast with other suggestions to construct
LB lattices (for example, [15,23]), where independent
searches have to be performed in each dimension. The en-
tropic construction thus essentially simplifies the problem of
searching for higher-dimensional lattices into the one-
dimensional problem that was handled in Sec. II. We shall
now consider the five-velocity set {0, =1, =3} or D1Q5-
ZOT lattice, and establish its induced lattices in two and
three dimensions.

B. The D1QS5-ZOT lattice

The one-dimensional zero-one-three (D1Q5-ZOT) lattice
is the shortest integer-valued discrete velocity set in the fam-
ily of five-velocity sets [7]. Due its enhanced accuracy and
ease of implementation, this lattice has a potential to replace
the existing family generated by the three-velocity D1Q3 set,
along with its D=2 (D2Q9) and D=3 (D3Q15, D3Q19, and
D3Q27) extensions. Substituting m=1 and n=3 into the gen-
eral expression (5), and using the notation W;=W., and
W;3=W.;, we get the weights and the reference temperature
for the D1Q5-ZOT lattice as

4 I 3 —
Wy= —(4+10), W, =-—(8-110),
0= 354+ V10, W= (8-110)

1
Wy=—(16-5110),

" 720

2
Ty=1- \/; (16)

C. The D2Q25-ZOT lattice

The discrete velocities of its two-dimensional extension
are obtained as a tensor product of the two copies of the
D1Q5-ZOT sets (see Fig. 7), while the weights are obtained
as the algebraic products of the corresponding one-
dimensional weights (16). Thus, the two-dimensional coun-
terpart of the D1QS5-ZOT lattice the D2Q25-ZOT lattice,
consists of 52 velocities, and can be described with ordered
pairs (i,j) V i,je{-3,-1,0,1,3}, centered around the rest
population [24]. The weights for the D2Q25-ZOT lattice can
be computed, shellwise, from the one-dimensional weights.
The weights of all the discrete velocities, (i, /), in a particular
energy shell, e=i’+ 2, are the same. Hence,

W(0,0) = W() X Wo,
Wo,+1)= Wi=1,0= Wy X W,
W, +3)= W(z30 = Wy X W3,

Wi+ = W X W,
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FIG. 7. The D2Q25-ZOT lattice obtained as a tensor product of
two five-velocity D1Q5-ZOT lattices.

Wisr,23)= Wiz )= W) X W3,

W(i3,i3) = W3 X W3. (]7)

The reference temperature and hence the speed of sound
(TO=052,) remains the same as in the one-dimensional case
(16).

Once the weights are known, the equilibrium populations
are derived by minimizing the entropy function H under the
constraints of local conservations [25]. In particular, at low
Mach numbers, a polynomial approximation to third order in
velocity can be written as

feq_pW<1 + T (cmzczﬁ’ TO oz,B)
0
uu
6T3 Cly(ctaczﬁ 3TO aﬁ)>+0(u4) (18)

A faster and a more accurate evaluation of the equilibrium
populations at small velocities (which are typically prevalent
in LB simulations) is possible with the product form intro-
duced in Ref. [25]. In the entropic construction, the equilib-
rium is defined as a minimum of the H function (2) under the
constraints of local conservation laws. If y, {,, and {, are
Lagrange multipliers corresponding to the conservation of
mass, the x momentum, and the y momentum respectively,
then the equilibrium populations can be written in the prod-
uct form as

[ = pWix &g, (19)

where the eighth-order accurate expansions of Lagrange
multipliers read

W ut (9-30T,+ 18Ty)u® ®
X=P\ o T2 T 14475 )
0 0 0

X(S)

= 8{T[ Ty (18T, — 43) +22] - 3H(uju?

)(

3847@

+ i) — 6{To[ To(41T, = 96) + 47] - 6}uyuiy
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FIG. 8. (Color online) Simulation of Taylor-Green vortex flow
with 2D extensions of various four- and five-velocity sets. Line,
analytical solution; symbols, simulation.

¢ =1+_a+_i+u_i+ i, +[3(T0—2)To+2]14§1
“ T, 2Ty 6T, 24T, 24T}
[18(Ty—2)Ty+ 117u
14475
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1447},
{24T0[3(3 To)Ty—7]+ 355 20)
115275 '

The D2Q25-ZOT lattice, with the above-mentioned equilib-
rium, recovers the Maxwell-Boltzmann moments with the
following accuracy of the moments:

Pl =pToS,p+ putgiig+ Oo(u®),
Oy = PTo(Ua Oy + UgBay+ Uy Bap) + plt Uit + o),

aﬂ—4pT05 s+ pTou*d wp+ OpT o g1t g+ o). (21)

This corresponds to the order of isotropy ¢=8, the same as
in the one-dimensional case. We note that the equilibrium
third-order moment Q% is fully recovered, and, compared
to the D2Q9 lattice, the D2Q25-ZOT lattice is two orders
more accurate. For isothermal flows, the D2Q25-ZOT lattice
accurately recovers the incompressible Navier-Stokes equa-
tions (without the u? errors). Thus, with the use of the prod-
uct from, accurate simulations are possible with a minimal
computational overhead.

Figure 8 shows the simulation of the 2D Taylor-Green
vortex flow. Periodic boundary conditions were imposed in
both directions; comparison with the analytical solution
(line) is also shown. Moreover, the 2D extensions of all
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D1Q5 lattices (and the D1Q4 lattices) listed in Table I were
tested for this setup and an equally good agreement was
found with the analytical solution.

D. The D3Q125-ZOT lattice

The one-dimensional D1Q5-ZOT lattice manifests itself,
via the tensor product, as the 53=125 velocity set in 3D. As
already mentioned, the accuracy of the moments for the
D3Q125-ZOT velocity lattice is the same as the one-
dimensional D1Q5-ZOT lattice, namely,

PZ% = pT05aﬁ + putp + 0(u6) ’
Oy = PTo(1toOpy+ UpOuy + Uy Oap) + Pl gl git., + o),

Ros= SpTéﬁaﬁ + pTou*Spp+ TpTouaug+ O(u?). (22)

The construction of lattices just described extends any
one-dimensional lattice of Sec. II into two and three dimen-
sions. All the lattices identified in this way support the en-
tropy function H and demonstrate superior numerical stabil-
ity. Now it is up to the user to wisely choose the lattice
(isotropy) that suits the desired requirements of accuracy.
However, the higher-order lattices, although accurate, come
with an added computational and storage cost. Although the
use of the product form of evaluation of equilibrium reduces
the computational cost dramatically, the memory require-
ment are significantly higher for storing the populations (125
populations per grid point for the D3Q125-ZOT lattice, in
particular). Let us now take up the task of reducing the num-
ber of discrete velocities in the higher dimensions, consider-
ing the D3Q125-ZOT lattice as a particularly important ex-
ample.

IV. PRUNING OF DISCRETE VELOCITY SETS

It is possible to reduce—or prune—the number of discrete
velocities, by sacrificing the accuracy of some of the mo-
ments, especially the higher-order terms of the higher-order
moments. Let us now consider the option of reducing the
number of discrete velocities in a given lattice by simply
discarding some.

The process of discarding the discrete velocities, or prun-
ing, is made easy when one realizes symmetry conditions.
Let us consider discarding a specific discrete velocity (i,J,k)
from a given lattice. In order to maintain the x symmetry, or,
equivalently, in order to maintain the conservation of x mo-
mentum, we need to also discard the discrete velocity
(~i,j,k). Similarly, in order to maintain the y and z symme-
tries (isotropy), we need to discard (i,—j,k) and (i,j,—k).
Now, since we have discarded (i,—j,k), we need to further
discard its x and z reflections (—i,—j,k) and (i,—j,—k), to
maintain x and z symmetries for (i,—j,k). This process con-
tinues until we have discarded all the velocities of the form
(*i, =, = k). Equivalently, one could argue that all the
populations belonging to a particular energy shell € (e=i’
+72+k?) should be retained or discarded as a set.

Hence, let us collate the discrete velocities of the
D3Q125-ZOT set, (i,j,k) ¥V i,j,ke{-3,-1,0,+1,+3}, in-
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TABLE III. Energy-shell representation of the D3Q125-ZOT
lattice.

€ Ci ny
0 (0,0,0) 1
1 (+1,0,0) 6
2 (£1,*1,0) 12
3 (x1,*+1,*1) 8
9 (£3,0,0)

10 (+1,+3,0) 24
11 (+1,*1,=%3) 24
18 (+3,+3,0) 12
19 (+1,+3,=%3) 24
27 (+3,+3,*3) 8

to energy-shell groups. The totality of the 125 velocities set
can be described by ten energy-shell groups from e=0 to 27.
The energy shells along with the number of discrete veloci-
ties nff) in each of the shells € are presented in Table III.

Certain observations can be made from this representa-
tion. For example, the lattice described by the first three en-
ergy shells of Table III is the familiar D3Q15 lattice. That is,
if we were to heavily prune the D3Q125-ZOT velocity set by
discarding all the discrete velocities except the ones belong-
ing to the first three energy shells in Table III, we get back
the standard D3Q15 lattice. Similarly, the first two energy
shells combined with the fourth energy shell result in the
D3Q19 Ilattice. The combination of the first four energy
shells recovers the D3Q27 lattice. Hence, the D3Q125-ZOT
lattice can be seen as the mother lattice that contains all the
standard LB lattices inside it.

A. The D3Q41-ZOT lattice

The next question that arises is the issue of accuracy of
the prunes of any given lattice. It can be argued that the
accuracy of a pruned lattice cannot exceed the accuracy of
the mother lattice. This also explains the lower accuracy of
the standard D3Q15, D3Q19, and D3Q27 lattices (prunes of
the D3Q125-ZOT lattice) as compared to the D3Q125-ZOT
lattice. Continuing further with the pruning of the D3Q125-
ZOT lattice (searching the energy shells for a prune), one can
arrive at the minimum number of velocities required to re-
produce the moments of the D3Q125-ZOT velocity set (22)

TABLE IV. Energy shells in the pruned D3Q41-ZOT lattice.

(e)

€ ¢ ng
0 (0,0,0) 1
1 (+1,0,0) 6
2 (+1,+1,0) 12
3 (=1,x1,=*1) 8
9 (£3,0,0) 6
27 (+3,+3,*3) 8
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with the same order of accuracy. In particular, a D3Q41-ZOT
lattice is an interesting prune which retains the same order of
accuracy of the equilibrium moments as the full D3Q125-
ZOT lattice. The energy shells that are retained in the
D3Q41-ZOT lattice are given in Table IV, and their corre-
sponding weights and the reference temperature are as fol-
lows:

2
Wi00.0/= 595 (5045 - 150710),

37 91

1 [
W, =——=-—, W =—(55-17+10),
100= 375" 40 (1,1,0) 50( \V10)

233310 =730 29592110
D= e00 0 00T 6000
130 - 41410 2
W633= 9600 0717 V5 (23)

The 41-velocity lattice is shown in Fig. 9. Once we have
identified the energy shells that need to be retained, we can
construct the equilibrium by minimizing the A function un-
der the constraints of local conservation laws (entropic con-
struction), thus completing the description of the lattice. We

u? ut

PHYSICAL REVIEW E 79, 046701 (2009)

FIG. 9. (Color online) The D3Q41-ZOT lattice. It can described
as a D3Q15 lattice stretched by a factor of 3 (shown with lower
transparency) and superimposed on a regular D3Q27 lattice (shown
brightly) without duplicating the rest population.

describe here the expressions for the Lagrange multipliers
that can be used in the product form (f;%=pW;x;*{[»(57) for
evaluation of the equilibrium [these expressions can be sig-
nificantly simplified, for computational efficiency, upon sub-
stituting the value of T, from Eq. (23)]:

[3—2ﬂﬂ5—3ﬂ9h6+[ﬂTb—DTb+ﬂ@é+ub@&+ub@&+ub

X=l-o 45— 5
2T,  8T% 48T5

16T,

_%—nmnwn—mMAHWﬂjRUan—MMQﬂ—%wbmm@+ﬁmﬁﬂéﬁ

3847T)

[7T(Ty + 1) = 3]} + s + ufu?)  {2[14To(5T) - 1) = 3Nuiuiulu?
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x7y

96T},

T ul

)

96T},
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w, ur uw ul [3(Ty-2)Ty+2]
L=+ 5+ 5+ + =
T, 2Ty 6T, 24T, 24T}
[18(Ty—2)Ty+ 11]u’
14475
. {8 = 3T,[To(3Ty— 11) + 11T}u!
1447}
{35-24T)[3(Ty - 3) Ty + TTu® (3T, - 1)u2( uz>
+ + |1+
11527} 48T T,
X{[(Ty=3)u’ + (T, - 9)u§u§ +(Ty - 3)uf]u?
+ (T, - 9)uiu%u2} (24)

Existence of the D3Q41-ZOT velocity set (as a prune of
the D3Q125-ZOT lattice) is not surprising. Indeed, it is simi-
lar to the D3Q15 and the D3Q19 lattices which can be re-
garded as the prunes of the D3Q27 lattice. In the latter case,
the order of accuracy of the moments of D3Q15 and of
D3Q19 LB lattices remains the same as that of the D3Q27
lattice but the number of discrete velocities is significantly
reduced from 27 to 15 (or 19). The 15-, 19-, and 27-velocity
sets all have errors of order u* in the equilibrium pressure
tensor PS4, order u? in the third-order moments quﬁy, and so
on. Although the number of error terms in the 15-velocity
lattice is higher than those in the 27-velocity case, it can be
argued that these errors are of the same order and hence do
not show up in the simulations [similar to the (41-125)-
velocity cases]. The 41-velocity set is hence two orders more
accurate than the 15-, 19-, or 27- (D1Q3 family) velocity sets
and, thanks to the product form, it is only 2.3 times slower
compared to the 15-velocity set.

V. NUMERICAL EXAMPLE

We present here a resolved direct numerical simulation
using the D3Q41-ZOT lattice from Sec. IV A. A well-known
3D setup of Taylor-Green vortex flow is simulated using the
41-velocity lattice and compared to the results obtained from
DNS using the higher-order spectral element method [26].
The grid sizes (64°—1283) were chosen to approximately
match the total number of degrees of freedom (number of
elements times number of collocation points raised to 3) used
in the spectral element simulation [26]. The equilibrium dis-
tributions were evaluated using the product form, f}!
=pWix i En e, with x, o, ¢, £, given by Eq. (24). As the
flow evolves from its highly symmetric initial conditions, the
enstrophy of the system (given by Q=0.5w?dx dy dz, where
w=V Xu is the vorticity) grows until a certain time and then
decays as the viscous forces take over the vortex stretching
process. Good agreement was found between the 41-velocity
LB simulations and the spectral element simulations (see
Fig. 10) at various Reynolds numbers. Further high-resolu-
tion simulations at higher Reynolds numbers will be pre-
sented in a separate communication.

VI. DISCUSSION

In this paper, we have shown that, in order to establish a
working higher-order lattice Boltzmann scheme, it is crucial
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FIG. 10. (Color online) Enstrophy history in the Taylor-Green
vortex flow at Re=100,500, 1000.

to choose the right set of discrete velocities along with their
weights and a reference temperature. A hierarchy of LB lat-
tices with a systematic increase in accuracy was presented, in
all three dimensions. The theory presented herein is com-
pletely general, and accounts for all possible Cartesian lat-
tices suitable for developing the LB models. The simple lat-
tices used in LB simulations (the D1Q3 lattice and its two-
and three-dimensional extensions) follow as low-order ap-
proximations in this construction. Other LB lattices obtained
from Gauss-Hermite quadrature are derived from the present
construction, as limiting cases of integer-valued lattices,
without any quadrature assumptions. Most importantly,
integer-valued lattices which preserve the essence and pri-
mary advantage of lattice Boltzmann methods, are identified
to any desired order of accuracy.

Apart from constructing stable lattices, an insight is pro-
vided as to why some of the lattices (already present in the
LB literature) are unstable. Until now, the instability of some
lattices was interpreted as inability of the LB scheme, or
luck, or inconsistency of LB advection or -collision
[15,20,22]. In the above construction, an infinite number of
stable lattices are identified. It is impossible to simulate all
the lattices identified herein. Many lattices including prunes
were tested for stability and without exception, all the lat-
tices that supported an entropy function were found to be
stable [27]. Applications of these lattices to other flow situ-
ations like multiphase flows, multicomponent flows, microf-
lows, etc. can lead to interesting results; for example, certain
lattices might be preferable for certain applications, etc.

In higher dimensions, the newly introduced concept of
pruning also promises to systematically search for the lat-
tices which best suit an application. Also, pruning can help in
significantly reducing the number of discrete velocities, in
higher dimensions. The process of pruning should be pre-
ferred over adding of energy shells or discrete velocities,
because pruning can avoid pitfalls like the {0, =1, +2} lat-
tice. By taking a {0, = 1} lattice and adding energy shells,
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nothing can be said about the stability of newly obtained
lattices. Also, adding is an infinite and uncontrolled process,
in terms of errors; while pruning is a finite process and we
always know the upper and lower bounds of the accuracy.
All the lattices that can identified by adding energy shells can
be identified in a more systematic way by pruning.

Finally, it must be noted that, for large discrete velocity
sets, the computational costs can be reduced by one to two
orders of magnitude by switching from the series evaluation
of equilibrium to the product form of evaluation of equilib-
rium [25].

APPENDIX A: ACCURACY OF D2Q9 LATTICE

It is useful to reconsider the popular one-dimensional
three-velocity lattice {0, * 1}, and its extensions in two and
three dimensions—the D2Q9 and D3Q27 velocity lattices.
The other two popular three-dimensional lattices used in the
LB method—the D3Q15 and D3Q19 velocity lattices—are
prunes of the D3Q27 velocity set and hence are less accurate.
It must be remembered that, to date, a majority of LB simu-
lations are performed using this family of the three-velocity
set (D1Q3). Let us enumerate the accuracy of the moments
(of equilibrium) using the example of the D2Q9 velocity
lattice. To start off, we need the equilibrium distribution to a
good order of accuracy. Often in the literature a quadratic
approximation to the equilibrium distribution,

. jacia 1 ..
fi%p.j) = W,-<p + 50+ S dalplCiatip= C§5aﬁ)> +03d),
S S

(A1)

is used. But unfortunately this expression assumes a cubic
error (%) in the equilibrium and hence in all its subsequent
moments. Let us consider here the fourth-order equilibrium
distribution obtained by expanding the Maxwell-Boltzmann
distribution on nodes of the third-order Gauss-Hermite
quadrature, i.e., expanding the MB distributions on a lattice
defined by the roots of the third-order Hermite polynomial. It
must be noted that such an expansion must be truncated at a
certain order (in this case, max u°) in order to avoid errors in
the conservation laws. The moments of the D2Q9 velocity
lattice, accurate to order u*, read

PHYSICAL REVIEW E 79, 046701 (2009)

u
0 =pu, +0X pu®, Q% = Py puyu2

XXX xxy = 3 X°
pu
05, =3 +puy,  OF = puy+0 X pic,
p 3pu
)ec?cxng'i-pux_ 4X’
xx,vy_g 3p pu,u, 4px v

The errors, i.e., the deviation from the moments of the
Maxwell-Boltzmann distributions, are underlined. In order to
avoid seeing these errors in a simulation, the magnitude of
velocity u is restricted to © <1072 in LB simulations. For
simple isothermal fluid flows these errors are not significant;
and this lattice was shown to accurately capture the behavior
of incompressible Navier-Stokes equations in many different
flow setups [1].

APPENDIX B: NON-GAUSSIAN EQUILIBRIA

The entropic construction proceeds without assuming the
Gauss-Hermite or any other quadrature. Inputs to the con-
struction are the requirements of the H function, and of the
MB form for the higher-order equilibrium moments. Re-
markably, this procedure recovered the Gauss-Hermite dis-
cretization at its limiting cases. The procedure has led also to
the discovery of lattices that cannot be represented by the
Gauss-Hermite quadrature; for example, the integer-valued
higher-order lattices. The shape of the equilibrium distribu-
tion for all the lattices reported here and elsewhere in the LB
literature resembles a Gaussian distribution. That is, the
weights W; are maximal for rest populations (corresponding
to ¢;=0) and are rapidly decaying with the velocity magni-
tude. We term this behavior Gaussian-like.

Interestingly, the integer-valued discrete velocities with a
Gaussian-like shape of the equilibrium are not the only so-
lutions recovered by the entropic construction. For the lat-
tices with more than three discrete velocities (D=1, n,;>3) it
was possible to find an alternative combination of W; and 7|,
which lead to non-Gaussian equilibria.

Let us illustrate this with the example of the five-velocity
set {0, =n, = m}. One set of the weights and of the reference
temperatures was found above [see Eq. (5)]. A different sets
of weights and reference temperatures for the same lattices
was found as (notice the difference in the sign in front of the
square root)

—3m* = 3n* + 54m2n® — (m* + n)\N9m* — 42n*m? + 9n*

4
p 3pu
Pi?czg-}-pu)zc— 4X’ Pigzpuxuyv
4
p 2 3puy
eq _ P _

Pyy =3 + pu;, 1

J
W0=

75m*n?

s

om* = 6n* = 27n*m> + 3m> - 2n?) Nom®* — 421%m? + 9n*

m

300m>(m> - n?) ’
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In* — 6m* — 27n°m?* + (3n® — 2m?) VOm* — 42n%m* + 9n*

*n

300n%(n* — m?) ’

0=

Noting that, for (5) the reference temperature is always less
than unity, and for (B1) it is always greater than unity; we
refer to the two solutions as the “lower-T,” (Ty<1) and
“higher-T,” (T,= 1) cases. Both sets of the weights and ref-
erence temperatures recover the equilibrium third-order mo-
ment, Q*1=3"4, f,-eqc?, correctly up to order >, and hence are
both valid candidates for the LB construction. However, they
recover the equilibrium fourth- (R®) and the higher-order
moments with a different accuracy. In other words, although
the order of isotropy ¢=8 is the same for both the solutions,
the numerical coefficients with which the errors appear in the
higher-order terms are different. We have earlier reported
that the choice of m and n affect the accuracy of the mo-
ments, and a good choice of m and n, or equivalently m/n
=rs, can push the error to one order higher in the moment
chain. In this particular case, the choice of r5=r:=(\"g
- \E)/ \6 improves the u* term in the fourth-order moment.
This ratio of the discrete velocities r; is the ratio of the
nontrivial roots of the fifth-order Hermite polynomial. At
r5:r;k we recover the fifth-order Gauss-Hermite quadrature
from the entropic construction.

Interestingly, the limit of the Gauss-Hermite quadrature
(where r5=r:, Yﬁ:l) is reached with both the lower- and

Higher T,
| —f— LowerT,

-0'.5‘- 0 "05 " |
ci

FIG. 11. (Color online) Equilibrium distribution, at zero veloc-
ity, for the lattice ¢;={0, =0.35, =1}, for both possible reference
temperatures. A curve with the shape exp(—ax?) is fitted onto the
weights for the lower-T, case to guide the eye [it should not be
confused with the curve exp(—x%/2Tp)].

a 3m?+3n + \/9m4 - 2n*m?* + 9n*
30 '

(B1)

higher-T), cases. That is, both sets (5) and (B1) converge to
the same limit of the Gauss-Hermite quadrature as r5—>r;k.
Moreover, the higher-T;, case results in non-Gaussian
weights before it reaches the limit. This is illustrated in Figs.
11 and 12. Figure 11 corresponds to r5=0.35 (away from the
limit r;k) while Fig. 12 corresponds to r5=0.4740 (close to
the limiting value r:z0.474 49). The lattice with rs=0.35
clearly shows a non-Gaussian shape for the equilibrium dis-
tribution in the higher-T,, case (B1).

To the best of our knowledge, this is the first time the
explicitly non-Gaussian distribution of the equilibrium
weights has appeared in the LB context. Simulations with the
non-Gaussian weights (B1) revealed no difference in numeri-
cal stability which can be attributed to the fact that both
lower- and higher-7;; LB models are supported by the en-
tropy function. In this paper, we consider only the lower
reference temperature case (5) where the equilibrium is
Gaussian-like.

APPENDIX C: 1D SEVEN VELOCITY SET

For a general seven-velocity set {0, =1, =m, *n}, the
expressions for the weights and the reference temperature are

0.5
1 [0  HigherT,
0.41 —f— LowerT,
0.3
s ]
0.2
0.1
N | .
-1 '-05" 0 "05 " 1
ci

FIG. 12. (Color online) Equilibrium distribution, at zero veloc-
ity, for the lattice ¢;={0, = 0.4740, = 1}, for both possible reference
temperatures.
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- 15T(3)+ 3(m?+n®+ 1)T(2)— [(n* + 1)m? + n®1Ty + m*n?

m*n®

0=

)

Wy ={2(m* = D)[(Ty— 1)m* = 3T% + TO]}_1<(T0[m2n2 +3T5 — (m? + n®) Ty ][m? + 1575 = 3(m? + 1) Ty [{— 15T + 3(m? + n®

+ I)T(z) —[(n* + D)m® + n®*]Ty + m*n®}) (n*(n* = D{[(Ty - 1)n* - 3T(2) + Tolm? + Ty[n* + 15T(2) -3+ )T, )"
(m* = 3T\ Tol— 15Tg + 3(m* + n? + 1) T2 = [(n® + )m® + n*]Ty + m2n2}>

n2

W, = (To[m?* + 15Ty = 3(m® + 1) To{{= 15T + 3(m* + n® + 1) Ty = [(n® + ))m? + n®]To + m*n*})
X (2(m = n)n®*(m + n)(n> = D{[(Ty - 1)n* - ST% + Tolm? + Ty[n* + 15T(2) -3(m*+ )T D7,

W (TO(STO -D{- ISTS +3(m*+n*+ l)Té —[(10® + D)m? + n*]Ty + m*n?}
m=" 22
mn

+(To((Ty = 1)n? = 3T%+ To)[m® + 15T% = 3(m* + )T }{— 15T5 + 3(m* + n® + 1) T3 = [(n® + 1)m® + n*]Ty + m*n’})
X ((m = n)n®*(m + n){[(Ty - 1)n® - 3T(2) + Tolm? + To[n* + 15TS -3’ + 1)T0]})>

X {2(m* = 1)[(Ty - 1)m* = 3T + Ty},

1
Ty= F()(lO(m2+n2+ 1) - 22/3{—250m6+ 825(n” + 1)m* + 75(11n* = 1040 + 11)m* = 25(n” + 1)(10n* — 431> + 10)

1

+ 5(4{945[@2 + Dm? +n*] = 225(m? + n* + 1)2F + 455 625[10m° = 33(n® + D)m* + (= 33n* + 312n% = 33)m?
1/3 A=

+ 2+ 1D)(10n* =432 + 1002 | = 232573[5m* = 11(n* + D)m® + 5n* = 11n* + 5]| = 50m°® + 165(n* + 1)m*

1
+ 15(11n* = 104n% + 11)m? = 5(n® + 1)(10n* — 431> + 10) + E(4{945[(n2 + Dm?+n%]-225(m> + n> +1)%?

-1/3
+455 625[10m® — 33(n® + D)m* + (= 33n* + 312n% = 33)m® + (n®> + 1)(10n* — 43n° + 10)]2)} ) (C1)

In order to compute the equilibrium, using the product form of the evaluation of equilibrium f{%=pW, x5, we present below
the Lagrange multipliers. If needed, these expressions can be substituted in the product form and expanded further (followed
by truncation) to obtain conventional series expressions for the equilibrium. The Lagrange multipliers for this general case are

_ Wl W {lBTy = Dn® +3(1 = 5To) Tolm?® + 3T[n* + 1075 = 5(n” + 1)Ty] + 60}u
=T, T8 T 48T 5760T; ’
2 3 4 5 6

u u u u u u
e T e W AL
S T, 2T5 6Ty 24T, 12075 72075 &+ g

- {{B3Ty = 1)n* +3(1 = 5To) Tylm?* + 3T [n* = 5(n* + 1) Ty] + 106}u’
! 50407}

>

- {8L(3Ty — )n® +3(1 = 5Ty)Tolm? + 24T [n* = 5(n* + 1) T,] + 841}u®

40 32078 (€2)
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The free parameters in the seven-velocity sets (C1) can be
used to tune the accuracy of the higher-order moments in this
family. Let us, however, report here the integer-valued lattice
with shortest links. For the seven-velocity family this lattice
in 1D is the {0, =1, =2, =3} lattice. For this lattice the
weights, the reference temperature, and the Lagrange multi-
pliers are given by

1
WO = %{To[3(14 - ST())TO - 49] + 36},

1
er = ETO[TO(STO - 13) + 12],

1
_T0[5(2 - To)To -3],

W+ =
2740

1
Was=——To[15(T -
*3 720 0[ (0

3
1 —
\/=(=5+330
2 13 7 7(73+3V30)
=—+— —
*73 73V 5(-5+3430) 357

~0.697 953322019683 1, (C3)

)Ty +4],

AT[3(14 = 5T)T, -

491+ 36}p* + 3T{TTo[5(T, -

PHYSICAL REVIEW E 79, 046701 (2009)

. W, wl Wl {8=Ty[10(Ty = )Ty + 49T
=70, 82T 48T 19207} ’
(C4)

2 3 4
u, u

=1+ =+ +—=
b= T0 2T3 6Ty 24T,
5 6

L A (D 8
12073~ 7207
= [3T0(10Ty—7) = 10]u’
* 7207} ’
- [24T((10Ty—7) = 79]u® ©5)
r 5760T% ‘

The accuracy of the {0, = 1, =2, = 3} lattice is given by Eq.

(10).

APPENDIX D: 1D NINE-VELOCITY SET

Although it is possible to consider a general nine-velocity
lattice {0, =m, *n,*q, = p}, generic expressions for
weights in terms of n, m, p are bulky, and we present here
the result assuming m=1, n=2, g=3. The weights and refer-
ence temperature in this case read

)Ty +7]- 12}

0= 36p*

Tl[To(5Ty - 13) + 12]p* + T [5(13 = TT) Ty — 36]}

o 16(p> = 1)
Wooe To{l=5(Ty = 2)To = 3]p* + To[5To(7T5 - 10) + 9]}
2 40(p* - 4)
W Top[15(Ty — 1)Ty+ 4] = 3T [5T(7T, - 5) + 4]} _3T{IT[5(Ty - 2)Ty + 7] - 12} 1)
= 720(p° - 9) L w136
P? 7 3
Ty= w18 60 ,—{35(p +14)2 = 840(2p* +7) + 12335D, + [12353(= Tp* + 110p* + 203)|D,}2
1 635%3(7p* = 110p* - 203
+ 35(p + 14)2 = 840(2p2 +7) — 6335D, + Gp P )
18470 D,
. V35(= 35p0 + 1050p* — 8232p% + 4112) ) 12
\/35([72 +14)2 - 84002p%* +7) + 12%@1:)1 +D7'[123573(= 7p* + 110p* + 203)]
D, = 35p° = 231p* = 7203p — 3760 D, + 21979,
D, =245p'? —10780p"'% + 13 7004p® — 164 696p° — 3 442 481p* — 14 677 656p* + 3 523 824. (D2)
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The numerical values for the reference temperature for a few
values of p are

T|p-4 = complex valued,
T0|[,:5 =0.756 080 852 594 268 58,
Tyl s = 0.732 023 042 334 901 70,
Tyl,er=0.721 161 034 124 337 75,

Tol,s = 0.714 986 240 769 250 02. (D3)

This is similar to the situation in the five-velocity case where
the reference temperature for the {0, =1, =2} lattice was
complex valued and the first lattice available was the {0,
+ 1, =3} lattice. The {0, = 1, * 2} lattice is now considered,
through trial and error attempts, as an unstable lattice and the
{0, =1, =3} is gaining momentum in the LB literature.
However, the theory of entropic construction could predict
the unstable nature of the {0, = 1, =2} lattice due to its com-
plex-valued reference temperature (during the entropic con-
struction) [7]. Hence based on this construction, the {0,
+1,+2,+3,+4} lattice can also be predicted to be un-
stable.

The definition of the lattice is complete once the expres-
sions for equilibrium distribution, or equivalently the expres-
sions for Lagrange multipliers are defined. The expressions
for mass and momentum conservation Lagrange multipliers
are
Lo

-_— + -_— R
2T, 8T} 48T, 384T,

u

x=1

2 3 4 5

u u u
L=l =+ =S+ 5+ —
X 2 3

Ty 212 6T

+ X
24T5 1207}

6 7 8

Uy Uy uy

+ + + .
7207 50407, 40 3207}

(D4)

For completeness, the weights and reference temperature

PHYSICAL REVIEW E 79, 046701 (2009)

for the shortest integer-valued nine-velocity set {0, =1,
+2,+3,+5} are listed here:

1
Wo= 55 (To3To[STo(7T ~ 39) +399] ~ 1261} +900).

1
th =- @To{To[5T0(7TQ - 38) + 361] - 300},

1
Wir= %TO{7TO[5(TO =5)Ty+37]-75},

i T{3T,[5Ty(7T, - 30) + 129] - 100}
= 11520 ’

 T{TTo[5(Ty = 2) Ty + 7] - 12}
- 134 400 ’

*5

Ty=0.756 080 852 594 268 58. (D5)

The expressions for Lagrange multipliers for the
{0, =1, *2, +3, =5} lattice are the same as in the general
case of {0, =1, =2, =3, * p}. The accuracy of the equilib-
rium moments for the {0, =1, *2, =3, = p} family of lat-
tices is

PEq = pTo + pu2 + 0(“10) N
Q% =3pTou + pu + O(u?),
R =3pT; + 6pTou* + pu* + O(u®),

§9=15pT3u + 10pTou’ + pu® + O(u”), (D6)

where the fifth-order equilibrium moment S*9=3/4,%¢> dif-
fers from its Maxwell-Boltzmann form by the terms of order
o).
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